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Time dependent numerical models for hyperbolic systems, such as the fluid dynamics 
equations, require time dependent boundary conditions when the systems are solved in a tinite 
domain. The “correct” boundary condition depends on the external solution, but for many 
problems the external solution is not known. In such cases nonreflecting boundary conditions 
often produce solutions with the desired behavior. This paper extends the concept of non- 
reflecting boundary conditions to the multidimensional case in non-rectangular coordinate 
systems. Results are given for several fluid dynamics test problems: the traveling shock wave, 
shock tube, spherical explosion. and homologous expansion problems in one dimension, and 
a traveling shock wave moving at a 45” angle with respect to the x axis in two dimensions. 
‘6” 1987 Academic Press, Inc. 

1. INTRODUCTION 

Numerical solutions to hyperbolic systems of differential equations, such as the 
fluid dynamics equations, are usually obtained over a finite region. The time 
evolution of the system is governed not only by the state in the interior of the 
region, but also by waves which enter the region from outside its boundary. Thus 
boundary conditions which describe the incoming waves are required to completely 
specify the behavior of the system. The outgoing waves are described by charac- 
teristic equations, while the incoming waves may often be specified by a non- 
reflecting boundary condition. Nonreflecting boundary conditions for muitidimen- 
sional problems are described below. 

2. WAVES IN ONE DIMENSION 

Consider first the one dimensional case in orthogonal (but not necessarily rec- 
tangular) coordinates. We have a system of n equations describing the behavior of n 
dependent variables. Let 0 be the vector of conservative variables, satisfying 
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where F is the flux vector, and C’ is an inhomogeneous term not containing 
derivatives (which often arises from divergence terms in nonrectangular 
geometries). Equation (1) describes the conservation properties of the system; that 
is, it relates the rate of change of the integral of a field over a small volume to the 
flux of that field across the volume boundaries. 

An alternate form for Eq. (1) is the primitive system, with a vector of dependent 
variables U, which satisfies 

g+*g+c=o, (2) 

where A is an n x 12 matrix. The choice of primitive variable vector U is not unique 
(although the choice of conserved variables is), and could be defined as the conser- 
vative vector. The following analysis assumes that U and U are distinct. 

The two systems are related by 

at! -p!z, 
at (3) 

with 

and 
A=P-’ Q, (7) 

C=P- ’ C’, (8) 

where P and Q are also n x n matrices. 
Now let Ii and ri be the set of left (row) and right (column) eigenvectors of A, 

satisfying 

I;A = ,$I;, (9) 

Ari = &ri, (10) 

where the 1, are the n eigenvalues of A, ordered so that 3., d I& d . . . <A,,. (The 
system is hyperbolic if the eigenvalues of A are real.) Then we obtain a diagonal 
matrix A by the similarly transformation 

SAS = A, (11) 
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where the rows of S are the left eigenvectors I;, the columns of S ’ are the right 
eigenvectors ri, and the matrix A is diagonal, with Aii = li. (Note that the transfor- 
mation follows from the orthogonality of the normalized left and right eigenvectors: 
l,rj = d,.) 

Multiplying Eq. (2) by S gives 

or 

(12) 

(13) 

in component form. Equation (12) is the characteristic equation corresponding to 
the original forms (1) and (2). 

If we can define a new function V by 

then (13) becomes 

dV,=l;dU+liCdt, (14) 

(15) 

which is a set of wave equations for waves with characteristic velocities 1.;. Each 
wave amplitude Vi is constant along the curve Cj in the xt plane defined by 
dxjdt = &. 

However, the definition of (14) generally can be made only if A and C are con- 
stant everywhere, or if no more than two differentials appear on the right side of 
(14). Otherwise the coefficients in (14) must satisfy Pfaffs condition for the 
integrability of differential forms for the functions Vi to exist [l], a condition not 
met for the fluid equations. Nevertheless, the characteristic form of (13) holds true 
independent of (14). 

3. NONREFLECTING BOUNDARY CONDITIONS IN ONE DIMENSION 

In the one dimensional case we wish to solve Eq. (1) over the region a d x d b. 
The problem is an initial boundary value problem, because both initial data in the 
region a < x < b and time dependent boundary conditions at x = a, b are needed for 
the problem to be well posed. Difficulty arises in the boundary condition 
specification because Eq. (1) generally contains eigenvalues of both signs at the 
boundaries, implying that waves are propagating into and out of the domain. It is 
therefore more fruitful to work with the characteristic form at the boundaries, since 
we can then consider each wave separately. 
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The outgoing waves (those with & < 0 at x = a, and Li 2 0 at x = b) depend only 
on information at and within the boundaries. Thus those equations in the form of 
(13) which represent outgoing waves can be solved as is, or in any equivalent form. 
Properly designed numerical approximations to (13) for outgoing waves, which 
depend on one-sided finite difference approximations involving only interior and 
boundary points, will therefore be stable. 

The incoming waves (with 2, > 0 at x = a, and 2, < 0 at x = h) are another matter. 
They depend on data exterior to the boundary, and numerical approximations to 
(13) not involving exterior data will be unstable. Thus we need to know something 
about the exterior solution in order to specify useful boundary conditions. In some 
problems, particularly steady state aerodynamics problems, the far field solutions 
are known to a good approximation, and the appropriate values can be specified 
CT 31. 

For time dependent problems (and many steady state problems as well) it is 
often desirable to use so-called nonreflecting or radiation boundary conditions, 
which have the property of minimizing reflections from outgoing waves. Bayliss and 
Turkel [4] formulated a perturbation approach in which the perturbations about 
the desired steady state were expressed in terms of waves. Then then imposed boun- 
dary conditions which annihilated the outgoing waves (i.e., prevented the 
generation of incoming waves). Engquist and Majda [S, 61 developed nonlocal, 
nonreflecting boundary conditions for linear systems. From their nonlocal con- 
ditions they derived a sequence of partially absorbing local conditions. Hedstrom 
[7] developed a nonreflecting boundary condition for the one dimensional rec- 
tangular, nonlinear case. As the only nonlinear condition, Hedstrom’s is by far the 
most useful for time dependent problems. It will be generalized to multidimensional 
problems and non-rectangular coordinate systems below. 

Hedstrom’s nonreflecting boundary condition [7] can be stated in the following 
way: the amplitudes qf the incoming waves are constant, in time, at the boundaries. 
This is the same as saying that there are no incoming waves, as it is the change in 
amplitude which indicates a wave. Mathematically, this condition is 

d vi 

iit r=o.h 
= 0, 

in terms of the wave amplitude V, of (14), or 

(16) 

(17) 

in general, for those waves whose characteristic velocities are directed inward at the 
boundary. Equations (17) for the incoming waves and (13) for the outgoing waves 
completely determine the solution at the boundaries. 

Note that Eq. (17) will not give the desired behavior for any problem which 
should in fact contain incoming waves. In such a case one must be able to specify 
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something about the incoming waves. Fortunately, Eq. (17) seems to be adequate 
for many problems of interest. 

It is easy to write a general equation which automatically reduces to Eq. (17) or 
Eq. (13) for incoming and outgoing waves. The general form is 

( l,!g+Y+lic )I = 0, ‘i = o,h 
where 

y.= ii1ig 

’ 1 

for outgoing waves, 

0 for incoming waves. 

(18) 

(19) 

Thus the characteristic and nonreflecting boundary conditions can be combined in 
a very natural way, unlike other extrapolation methods. 

The set of Equations (18) is solved by a method of lines approach, in a way 
similar to (and along with) that for the conservative equations in the interior (as 
described in Section 6). The function values are obtained at the discrete coordinate 
positions xi, where 

x;=a+iAx, (20) 

Ax = (b - a)/Z. (21) 

Equation (1) is solved at the interior points, defined by 0 6 i < Z, while the boun- 
dary equation (in the form of Eq. (25) below) is solved at the boundary points, 
defined by i < 0 or i > I. (The interior scheme of Section 6 requires two boundary 
points at each boundary.) The spatial derivatives in (19) are evaluated using one- 
sided difference approximations 

au 
Y& ~=&J;+rui), i < 0, 

I 

=A (Ui- Uj-. I), i > I. 

To get an equation for the conservative variables, we first define JZ as the 
column vector whose components are g, and write 

S~+~+SC=O. (24) 

which leads to 

fg+P(S-1y+C)=O. (25) 
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4. WAVES IN Two DIMENSIONS 

In two dimensions the conservative system is 

~+:F+~+C:+c;.=o, at ax ay 

with CL and Cl representing non-derivative terms, as before. (Only the sum of the 
C’ terms matters; the sum has been partitioned into two terms to retain consistency 
with the one dimensional case.) We have the relations 

(27) 

(28) 

A=P-‘Q, B=P-‘R, (29) 

c, = P-W:, c~,=P-‘c:., (30) 

which relate the conservative form of (26) to the primitive form 

(31) 

Now let Ii, r,, and A, be the left and right eigenvectors and eigenvalues of A. 
Similarly, let mi, si, and p, be the left and right eigenvectors and eigenvalues of B. 
Then the matrices A and B can be put in the diagonal forms A and M by the 
similarity transformations 

SAS’=A, TBT-‘=M. (32) 

The rows of S (T) are the left eigenvectors I, (m,), the columns of S ’ (T-l) are the 
right eigenvectors r, (s,), and A (M) is the diagonal matrix of eigenvalues A, (p,). 
Then Eq. (31) can be rewritten as 

(33) 

which is as close to the characteristic form in one dimension as we can come unless 
S and T are the same (i.e., unless A and B are simultaneously diagonalizable), and 
which will be referred to as a characteristic form due to the presence of the diagonal 
characteristic velocity matrices. 



TIMEDEPENDENT BOUNDARY CONDITIONS 7 

5. NONREFLECTING BOUNDARY CONDITIONS IN Two DIMENSIONS 

The two dimensional problem allows for an arbitrary number of boundary 
points, since the boundary is now a curve enclosing a two dimensional space. Let 
the spatial coordinates be (x, y), in a general curvilinear coordinate system (not 
necessarily rectangular). The solution U, is obtained at the points (xi, y,) on a rec- 
tangular grid with equal spacings (dx, dy) between successive points in each direc- 
tion. Interior points have 0 < i < Z, 0 <j 6 J. The boundaries form a rectangle in the 
xy plane, and each side of the rectangle consists of one or more layers of boundary 
points. The boundary surfaces intersect at four corners, each of which consists of 
one or more corner points. Away from the corners, each boundary point has an 
associated normal and tangential direction (there would be two tangential direc- 
tions in three dimensions), while at the corner points each direction is normal. 

The original conservative system of equations is given in (26). For definiteness, 
let us consider the y boundaries, defined by the surfaces y = constant, which have 
the index values j < 0 or j > J. Then the x derivative, which is in the tangential 
direction, can be evaluated numerically as an interior term. The y term is in the 
normal direction, however, and must be put in characteristic form so that the 
appropriate boundary conditions can be imposed. Thus we write Eq. (26) as 

g+g+C:+I' T-%lTF+C, 
aY 

(34) 

at the y boundaries. Abbreviating the quantity in parentheses as -aU/at~,., we must 
evaluate lW/&,, as given by 

Ts+MTE+TC =0 
at,, ay .b' ' (35) 

to provide boundary conditions for (34) at y boundaries. Next define the quantity 
44fkI 

au 
& = pkrnks for outgoing waves, 

k 

0 for incoming waves, 

and compute au/&, from 

(36) 

m u+~ +m C =0 k at, k k y . (37) 
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The spatial derivative in (36) is approximated by the one-sided difference formulas 

au 
& .=+j C”i,+l -“ij)3 .i<O, (38) 

j > J. (39) 

Given au/at,, we compute au/at from 

(40) 

At the x boundaries the y derivatives are evaluated in conservative form by cen- 
tered difference approximations, while the x direction terms are put in characteristic 
form as above. At the corners both directions are normal, and all terms are put in 
characteristic form, as in (33). 

6. NUMERICAL SOLUTION OF THE INTERIOR PROBLEM 

The problems considered in this paper are of two types. The first is the one 
dimensional fluid dynamics problem, in either rectangular or spherical coordinates. 
The second is a two dimensional problem in rectangular coordinates. In both cases 
the solutions may be discontinuous, and it is necessary to add dissipative terms to 
the finite difference approximations in order to damp nonphysical oscillations 
around the discontinuities. (These oscillations occur because central difference 
approximations are made to the spatial derivatives in the fluid equations.) The dis- 
sipative terms vanish in the limit of zero grid spacing, but diffuse sharp gradients 
when the spacing is nonzero. The equations, dissipative terms, and numerical 
methods are more thoroughly discussed in Ref. [S]. 

The one dimensional system, in conservative form and with dissipative terms 
included, may be written 

(41) 

(42) 

(43 1 

where p is the density, u the velocity, m the momentum density (m =pu), e the 
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energy density (e = 4 pu2 +p/(y - 1)) and p the pressure of the fluid. The equation 
of state can be written 

where y is the constant ratio of specific heats. The spatial coordinate is r, and the 
coordinate system is specified by n (II = 0, 1, or 2 for rectangular, cylindrical, or 
spherical coordinates, respectively). 

The dissipation coefficient E = O(dr) in smooth regions and is given by [8] 

(46) 

1 
Ei = - (E, ~ 1;2 + Ei+ 112 ). 2 (47) 

The k value determines the maximum amount of dissipation to be added, and is set 
by the user. 

The spatial derivatives on the left side of the equals signs in Eqs. (41)-(43) are 
evaluated by the fourth order approximation 

while the divergence terms on the right are evaluated by 

= O(dr’). 

Although the overall accuracy of the approximations is second order, the fourth 
order approximation to the spatial derivatives yields sharper jumps at shock waves 
than do second order approximations. 

Replacing the spatial derivatives with the above approximations yields a set of 
equations of the form 

z = (PU);, (50) 



10 KEVIN W. THOMPSON 

where 0 is the vector of conservative unknowns (p, m, and e for the fluid 
equations), and P is a nonlinear operator. (Equation (50) holds at the boundary as 
well as in the interior, but the P operator is different at the boundary and interior 
points. The details of the finite differencing at the boundary points are given in 
Section 8.) 

Equation (50) is a set of coupled ordinary differential equations, which may be 
integrated from time level t” to level t”+ ’ = ’ t + At by the following 4 step, second 
order method [9]: 

(This method was chosen because it requires a relatively small amount of storage, 
and is particularly simple to implement in a computer program, as one repeats 
essentially the same calculation four times to complete each time step.) The boun- 
dary equations (25) are integrated along with the interior equations, using the same 
time stepping scheme. 

The two dimensional system, also in conservative form and containing dissipative 
terms, but in rectangular coordinates, is 

(52) 

(53) 

(54) 

(55) 
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where (m,, my) and (u,, uY) are the momentum density and velocity vectors, 
respectively. The same finite difference approximations for spatial derivatives as 
above are made, with E, and sy depending on the grid spacing and pressure 
gradients in the x and y directions, as in (45) and (46) [S]. The equation of state is 

P = (Y - 1 )Ce - 1 P (4 + $11. (56) 

7. CHARACTERISTIC EQUATIONS FOR FLUID DYNAMICS 

The boundary conditions require that the fluid equations be put in characteristic 
form at the boundaries, so we begin the boundary specification for fluid dynamics 
problems by finding the characteristic form for the fluid equations. 

In the one dimensional case we can write the fluid equations in the form of 
Eq. (2) with 

where s is a measure of the entropy 

s = pp ~ j’, 

and c is the speed of sound 

c2 = YPIP 

(The dissipative terms are set to zero at the boundaries.) 
The eigenvalues of A are 

(58) 

(59) 

l&,=u-c, 1, = 24, f&=u+c, 

and the left eigenvectors are 

(60) 

I,=(-Cd’, -;), I,=(O,O,l), &=(c,p.;). (61) 

Taking s as a primitive variable simplifies the eigenvalue calculation, but is 
inconvenient for numerical work. Therefore we eliminate .F in favor of p and p and 
get the characteristic equations 

(62) 
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(63) 

(64) 

where the new primitive variable vector U has components p, u, and p. 
Given W/at at the boundaries, au/at is obtained from (3) by 

8P 8P 
x=2 

am i?p hi 
Tg="z+Pi)t' 

ae 1 2 dp au 1 8P -- 
z=p z+p”z+y-l (jr’ 

(65) 

(66) 

(67) 

In two dimensions the fluid equations may be written in the form of (33) with 

PO0 

l.4, 0 p 
PS 

0 24, 0 

0 0 u, 

The eigenvalues of A and B are 

1, =u,-cc, 22 = 23 = 4, 1, = u, + c, 

PI = u., - c, P2 = PLi = u, 9 p4=u,+c. 

The y direction characteristic terms, in the form of (35), are 

ap au, 
at-P"at+C"' 

I I 
(!$pc!$L>=o, 

ap --c~~+p3(~-c2~)=o, at, 

ap 
at+pc-g++4 

I’ 

‘“: ($+pc~> =o. 

c.=c,.=o. 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

An analogous set holds for the x direction. 
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The conservative and primitive time derivatives are related by 

ap ap -=--) 
at at (75) 

dm ap au L=u,-+pP, 
at at at 

am ap au, A=u,-+pp-, at at at 

(76) 

(77) 

(78) 

8. BOUNDARY CONDITIONS FOR FLUID DYNAMICS 

In the one dimensional case, we solve Eqs. (41)-(43) in the interior using cen- 
tered finite difference approximations for the spatial derivatives, and an explicit 
ordinary differential equation solver to integrate the time derivatives of the conser- 
vative variables. The interior algorithm requires data at the boundary points, which 
are obtained by solving the combined characteristic and nonreflecting equations at 
those points. The details of the boundary calculations are given below. 

We first write the boundary equations as 

(79) 

(80) 

dPi dt+pici~+~i+ppicju,=o, (81) 

where each Pjki is set to zero if A, at Y, is directed inward (nonreflecting condition), 
or is computed according to the characteristic equations if Ak at ri is directed out- 
ward: 

.SgizCuipci)& [Pi+,-P;-P,C;(ui+I-U,)], i < 0, u, - c, < 0, (82) 

=C”ieci)$ CPi-PI~l-Picj(uj--i~,)], i > I, 2.4, - c, > 0; (83) 

%izui$ [Pi+1 -Pimcf(Pi+ *- Pi117 i < 0, ui < 0, (84) 

=“i& CPi-Pi-l-cZ(Pl-Pi~I)l, i > I, ui > 0; (85) 
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%i = (Ui + Ci) $ [Pi+ I -Pi + Picitui+ I - ui)l, i < 0, ui + ci < 0, 

=C”i+ci)$ [Pi-Pi-l +Pici(ui-uz--~)l~ i > I, u; + c; > 0. 

Given the dp values, the time derivatives of the the primitive variables are 

(86) 

(87) 

(88) 

(89) 

(90) 

and Eqs. (66) and (67) provide dmJdt and deJdt at the boundaries, to be integrated 
in time along with the interior values. 

The two dimensional case is similar. We solve Eqs. (52))(55) in the interior, 
using centered finite difference approximations for the spatial derivatives, and an 
explicit integration method for the time derivatives. We now have four boundaries, 
defined by x = x,,,~,, , x = x,,, , y = y,,, , and y = y,,, . Since all four boundaries are 
treated in a similar fashion, it will be sufficient to look at the y = constant boun- 
daries. 

We begin by writing the fluid equations at the y boundary points as 

(91) 

(92) 

(93) 

(94) 

where the a~/&, terms are the contributions to au/at due to derivatives in the nor- 
mal (y) direction. The x derivatives are in the tangential direction, relative to the 
boundary, and are evaluated just as in the interior. 

We need to compute the a~/&, terms in (91)-(94), and begin by writing 
Eqs. (71)(74) in finite difference form, as 



TIME DEPENDENT BOUNDARY CONDITIONS 15 

(98) 

where each Akii is set to zero if the local 4’ direction characteristic velocity, pk, is 
directed inward (nonreflecting condition), or is computed according to the charac- 
teristic forms below if pk is directed outward: 

(99) 

=(“yij-Ch)& CPij-Pi,~I-Pi,CiJ(u?,,--u,iJ~ I)], 

j > J, uy;j - ci, > 0; 

- UYJ’ 60, u,.!, < 0, 

(100) 

(101) 

= u,ij L (UYij - u rij - ,I, 
AY 

j> J, u,.~~>O; (102) 

A31j = uyi, & C Pij + I -Po - Cf,(P,j+ I - P,)l, .i < 0, ul?; < 0, (103) 

.i>J, u,.,>O; (104) 

4ij=(“wj+cg)k CPiJ+l-PC+Pijcii(u,o+I-Ul.ii)], 

j< 0, Uyij + Cij < 0, 

=(“,;ij+c,)& CPij-Pii- +P~c;f(uyij-U,+l)]~ 

j>J, u,~+c,,>O. 

(105) 

(106) 

581/68/l-2 
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Given the JI values, we compute iXJ/at, from 

dp,- 1 

dt,. 
- -2 (4ij + dlz~), 

du?;j 
--!- (J&i, - J&L dt,= 2PljClj 

(107) 

(108) 

(109) 

(110) 

Finally, dm,ij/dt.,, dm,,/dt,,, and de,,/dt,. are calculated using (76))( 78), and their 
values are used in the finite difference approximations to Eqs. (91))(94). A similar 
process is followed at the x boundaries. 

9. TEST PROBLEMS 

The one dimensional problems are evaluated on a grid of unit length, divided 
into 100 subintervals (I= 100, Ar = 0.01). The value of y in the equation of state is 
5/3 throughout. The figures show the analytical solutions (solid lines) and 
numerical solutions (dots) for the density p, the pressure p, the momentum density 
m, and the velocity U, at a time t. The Courant number /I, 

(1 dimension), 

(2 dimensions), 

is set to 1 throughout, where c, = max( Iu, 1 + c) over the grid (and similarly for c,. 
and c,). 

The first problem is a single shock wave moving into a uniform stationary 
medium. The shock starts at x = 0.5 and has a positive velocity. The pre-shock state 
has p =p = 1 and u = 0. The problem is determined by the pre- and post-shock 
values of p, p, and U, and the shock velocity V,, and must satify the three shock 
jump conditions [lo]. Thus we have one more free parameter, chosen to be the 
Mach number M = u/c of the post-shock flow. The Mach number is related to the 
ratio R =p,/p, of the shocked to unshocked pressures by 

2 (R- 1)2 
M2=&+1+(y-1)R’ 

(112) 

As R-co, M244;,, = 2/[y(y - l)], where M,,, = 1.3416 for y = 513. 
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TABLE I 

Reflections for Subsonic Shocks 

Mach number 
M 

Pressure ratio 
R =PSP, 

Relative error (%) 
100 x (P”“, -Pa,)IP.. 

0.50 2.504 0.08 
0.60 3.096 0.19 
0.70 3.891 0.33 
0.80 5.000 0.48 
0.90 6.635 0.68 
0.92 7.058 0.71 
0.94 7.524 0.74 
0.95 7.775 0.77 
0.96 8.040 0.78 
0.97 8.319 0.81 
0.98 8.614 0.82 
0.99 8.926 0.82 
0.995 9.089 0.80 
1.00 9.257 0.77 

A reflection is generated when an outgoing subsonic shock wave crosses a boun- 
dary, as demonstrated by Hedstrom [7]. The reflection takes the form of a con- 
stant amplitude perturbation to the post-shock solution, which travels inward from 
the boundary at the speed of sound relative to the moving fluid. A convenient 
measure of the reflection is the relative error in the pressure after the shock has 
crossed the boundary, defined as the difference between the numerical and 
analytical pressure values, divided by the analytical pressure. Table I gives the 
pressure ratio R and reflections as a function of the Mach number, for subsonic 
shock waves modeled with k = 0.35. (A significantly smaller value of k results in 
large oscillations near the shock, while a larger value spreads the shock jump out 
over many grid points.) 

The reflections are small, nowhere exceeding 1%. The worst case is the A4 = 0.98 
shock, with a reflection of 0.82%. It is interesting to note that the reflection 
decreases as A4 increases from 0.99 to 1.0, although the shock jump increases. 

Hedstrom [7] observed a reflection of 12% in the velocity profile of his Fig. 6. It 
is not certain why there is such a large discrepancy between his results and those 
presented here, but a likely culprit is the mismatch between his interior and boun- 
dary methods. He used the Lax-Wendroff method for the interior. At the boundary, 
he used first order approximations to the spatial derivatives, and 

sun 1 xii =--p+‘-u~)+o(dt) (113) 

for the time derivatives. The two time integration methods are quite different. In 
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FIG. 1. Shock tube at step 60 

contrast, the four step time integration scheme of (51) was used for both interior 
and boundary points here. 

When the flow behind the shock is supersonic (M > 1) all characteristics point to 
the right, and no signals can propagate to the left. Thus no reflections can be 
produced, and none are observed. 

The next example is the shock tube problem, frequently used as a test for 
hydrodynamical codes (as in Sod [ ll]), and whose solution is given by Thompson 
[S]. At time t =0 the system consists of two spatially constant, stationary states, 
adjoining at x = 0. The left state (x < 0) has p =p = 1, while the right state has 
p=O.125, p=O.l. A s rme progresses, a rarefaction wave forms and moves to the t’ 
left, while the contact discontinuity and a shock wave move to the right. 

[;~jip- 

-.4 -.2 0 .2 .4 .6 -.4 -.2 0 .2 .4 .6 

X X 

FIG. 2. Shock tube at step 100. 
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Figure 1 shows the solution at time step 60, t=0.265, with k=0.3, just before 
any waves reach the boundaries. Figure 2 shows the same problem at step 100 and 
t = 0.438. The rarefaction wave has passed through the left boundary, and the shock 
wave has passed through the right boundary. No reflections are visible on either 
side. The boundaries are well behaved. 

The next problem considered is the Sedov solution for a spherically symmetric 
explosion, described by Landau and Lifshitz [lo]. (N.B. Equation (99.10) of the 
reference should have v5 = 2/(y - 2).) A n amount of energy E is deposited at the 
origin at time t = 0. The resultant explosion produces a self-similar solution boun- 
ded by an outgoing spherical shock wave. The density and pressure curves are 
sharply peaked at the shock, falling off rapidly for decreasing r. The density goes to 
zero at the origin, while the pressure flattens out and becomes constant with r away 
from the shock. The velocity is linear near the origin, but steepens somewhat near 
the shock. The similarity solution is valid as long as the shock is very strong, so 
that the density jump across the shock achieves its maximum value. 

The numerical solution is produced by distributing an amount of energy E = 1 
over the innermost five grid intervals, in the form of thermal energy. Let the sum of 
the volume elements for the first five points be 

5 
vol= 471 Ar 1 rf , 

r=O 
(114) 

then the initial pressure is 
p; = (y - 1) E/vol, (115) 

for i = O,..., 5. For i> 5, pi= 10e6. We also have p = 1 and u = 0 everywhere. The 
resultant numerical solution is shown in Fig. 3 at step 422, t = 0.602, and with 
k=0.14. 

FIG. 3. Spherical explosion at step 422 
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Figure 4 shows the explosion at step 1000, t = 2.243, with the vertical scales 
magnified. The shock wave has passed out of the domain, and the velocity at the 
boundary has decreased from supersonic to subsonic. A perturbation has developed 
at the boundary and is propagating inward, as can be seen most clearly from the 
velocity curve. At later times the perturbation is reflected from the center and 
propagates out of the problem, leaving behind an altered interior state. The 
pressure is then low everywhere by about 15%, and the velocity is low by about 
40%. The discrepancy is presumably due to the fact that the similarity solution for 
the explosion really does contain an inward propagating wave, which is suppressed 
by the boundary conditions. The resulting numerical solution is a valid one, but it 
is not the solution to the explosion problem at late times. 
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FIG. 4. Spherical explosion at step ll?GO, magnified. 

The impossibility of properly specifying boundary conditions for all problems 
with the nonreflecting prescription is further illustrated by the following problem, 
the homologous expansion of a uniform medium. At time t = 0 the density and 
pressure are uniform, with p =p = 1. The velocity is linear, with u = x/t,,, t, chosen 
to be 1. The region studied is -0.5 6 x < 0.5. The density and pressure decrease 
with time but remain uniform, while the velocity also decreases but remains linear 
in x. The flow at the boundaries is always subsonic and directed outward for this 
set of initial conditions. 

The problem has a simple analytical solution, given by 

( > 
-1 

p=po 1,; > 

( > 

-Y 
p=po 1,; > 

X u=- 
t+to’ 

(116) 

(117) 

(118) 
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FIG. 5. Homologous expansion at step 50. 
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One can verify by direct substitution that this solution does not satisfy the non- 
reflecting boundary conditions. For example, at the right boundary (X = b) the flow 
is subsonic and directed outward. The two characteristic equations representing 
outgoing waves (Eqs. (63) and (64)) hold as written, while the absence of an incom- 
ing wave is imposed by the nonreflecting condition of Eq. (79) with Y, = 0, which 
can be written 

ap au 
;i;-pc7t=o. 

The analytic solution does not satisfy the nonreflecting condition, so the non- 
reflecting condition will not produce the desired numerical solution. 

Figure 5 shows the expansion problem at step 50, t = 0.305, with k = 0. The 
numerical and analytic solutions diverge markedly near the boundaries, although 
they match well in the middle portion. The discrepancy grows with time until the 
two solutions disagree everywhere. 

We can use information about this particular problem to specify better boundary 
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FIG. 7. Angled shock, step 50. 
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conditions. In particular, the pressure gradient is zero everywhere, and the velocity 
satisfies 

au au ~+u~=o, (119) 

which is in characteristic form and describes outflow at the boundary. If (119) is 
used in place of the nonreflecting boundary condition, we have three characteristic 
equations describing outgoing waves. (By throwing out the pressure gradient term, 
we have excluded sound waves from the problem. The only characteristic velocity 
left is the fluid velocity. The evolution of the velocity profile then determines the 
rest of the solution). The resulting numerical solution matches the analytical 
solution everywhere. 

This result is not meant as an endorsement of Eq. (119) as a boundary condition 
in general (it does nothing useful for the explosion problem), but simply illustrates 
that nonreflecting boundary conditions cannot be expected to give the desired 
results on problems which do contain incoming waves. Information specific to such 
problems may be used to produce more useful boundary conditions. 
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FIG. 8. Angled shock, step 200. 
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The final test problem is two dimensional. It is a planar Newtonian shock, travel- 
ing in rectangular geometry. The grid has dx = dy = 0.02. The shock is traveling 
toward the upper right, at a 45” angle with respect to the x axis. The initial distance 
R, between the shock front and the origin is 0.8. The unshocked density and 
pressure are p = 1, p = 1, with U, = uy = 0. The Mach number of the flow behind the 
shock is A4 = 0.95, picked to roughly maximize reflection errors. The dissipation 
used is k = 0.1. 

Contour plots of the density, pressure, and velocity fields in Figs. 6 through 8 
show the time evolution of the solution. The figures are at step 1, t = 0.03; step 50, 
t = 0.14; and step 200, t = 0.58, respectively. Step 1 shows essentially the initial con- 
ditions, with a small amount of transient jitter induced by the discontinuous data, 
which disappears as the solution evolves. Step 50 shows the shock shortly before it 
reaches the corner. A slight hint of boundary perturbations can be seen near the 
edges of the shock. Step 200 shows the solution well after the shock has left the grid. 
The reflection from the corner has propagated inward, and at its peak amounts to 
about 4% of the post-shock pressure profile. The reflection is greater than in the 
one dimensional case, perhaps because the corner is subject to reflections from two 
coordinate directions, but not enough to obscure significant features of the post- 
shock flow (if there were any). 
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